Pattern Colored Hamilton Cycles in Random Graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properly colored Hamilton cycles in edge-colored complete graphs

It is shown that for every > 0 and n > n0( ), any complete graph K on n vertices whose edges are colored so that no vertex is incident with more than (1 − 1 √ 2 − )n edges of the same color, contains a Hamilton cycle in which adjacent edges have distinct colors. Moreover, for every k between 3 and n any such K contains a cycle of length k in which adjacent edges have distinct colors.

متن کامل

Hamilton cycles in random lifts of graphs

An n-lift of a graph K, is a graph with vertex set V (K)× [n] and for each edge (i, j) ∈ E(K) there is a perfect matching between {i} × [n] and {j} × [n]. If these matchings are chosen independently and uniformly at random then we say that we have a random n-lift. We show that there are constants h1, h2 such that if h ≥ h1 then a random n-lift of the complete graph Kh is hamiltonian whp and if ...

متن کامل

Hamilton Cycles in Random Geometric Graphs

We prove that, in the Gilbert model for a random geometric graph, almost every graph becomes Hamiltonian exactly when it first becomes 2-connected. This proves a conjecture of Penrose. We also show that in the k-nearest neighbour model, there is a constant κ such that almost every κ-connected graph has a Hamilton cycle.

متن کامل

Compatible Hamilton cycles in random graphs

A graph is Hamiltonian if it contains a cycle passing through every vertex. One of the cornerstone results in the theory of random graphs asserts that for edge probability p logn n , the random graph G(n, p) is asymptotically almost surely Hamiltonian. We obtain the following strengthening of this result. Given a graph G = (V,E), an incompatibility system F over G is a family F = {Fv}v∈V where ...

متن کامل

Rainbow hamilton cycles in random graphs

One of the most famous results in the theory of random graphs establishes that the threshold for Hamiltonicity in the Erdős-Rényi random graph Gn,p is around p ∼ logn+log logn n . Much research has been done to extend this to increasingly challenging random structures. In particular, a recent result by Frieze determined the asymptotic threshold for a loose Hamilton cycle in the random 3-uniform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2019

ISSN: 0895-4801,1095-7146

DOI: 10.1137/17m1149420